Abstract

Ni-based perovskites are promising oxygen carriers for chemical looping steam reforming to produce H2-rich gas from organics. In this study, a series of Fe-doped LaNiO3 perovskites with various Ni/Fe ratios (LaNixFe1-xO3 (0 ≤ x ≤ 1)) were investigated for chemical looping steam reforming of acetic acid as a model compounds of bio-oil. Results illustrated that although LaNiO3 showed higher activity for gas production, the Ni–Fe bimetallic perovskites were more stable during the steam reforming reactions. It was found that Fe doping can promote the content of lattice oxygen in the perovskite which could be released during the steam reforming reaction, thus coking resistant of the perovskite was effectively improved. Among the LaNixFe1-xO3 (0 ≤ x ≤ 1) perovskites, LaNi0.8Fe0.2O3 exhibited the best synergistic effect between Ni and Fe to achieve the highest H2/CO for H2-rich gas production. Operational variables of the steam reforming reactions catalyzed by LaNi0.8Fe0.2O3 for H2 production were further optimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call