Abstract
Pyrolysis has been demonstrated to be a highly effective thermochemical process for converting complex biomaterials into biochar and syngas rich in hydrogen. The pyrolysis of mixed date palm seeds from Saudi Arabia was conducted using a fixed-bed pyrolyzer that was custom made for the purpose. The influence of the pyrolysis temperature (200–1000 °C) on the various physicochemical parameters of the date seed biochar generated through the pyrolysis process and the hydrogen-rich syngas was investigated. Proximate and ultimate analyses indicated a high carbon content in the lignocellulosic constituents such as cellulose, hemicellulose, and lignin. Using energy-dispersive X-ray (EDX) analysis, it was discovered that the elemental composition of biochar changes with the pyrolysis temperature. The date seeds pyrolyzed at 800 °C were found to have the maximum carbon concentration, with 97.99% of the total carbon content. The analysis of the biochar indicated a high concentration of carbon, as well as magnesium and potassium. There was a potential for the production of hydrogen-rich syngas, which increased with the pyrolysis temperature. At 1000 °C, the highest hydrogen and carbon monoxide compositions of 40 mol% and 32 mol%, respectively, were obtained. The kinetic data of the date seed pyrolysis were fitted using linearized model-free methods, such as Friedman, Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS), as well as non-linear methods such as Vyazovkin and advanced Vyazovkin. The activation energies obtained from Friedman, FWO, and KAS varied in the range of 30–75 kJ/mol, 30–65 kJ/mol, and 30–40 kJ/mol, respectively, while those of Vyazovkin and advanced Vyazovkin were found in the range of 25–30 kJ/mol, and 30–70 kJ/mol, respectively. The analysis showed that the FWO and KAS models show smaller variation compared to Friedman.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.