Abstract

In the present study the catalytic steam gasification of MSW to produce hydrogen-rich gas or syngas (H 2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 750–950 °C, with a steam to MSW ratio of 0.77, for weight hourly space velocity of 1.29 h −1. Over the ranges of experimental conditions examined, calcined dolomite revealed better catalytic performance, at the presence of steam, tar was completely decomposed as temperature increases from 850 to 950 °C. Higher temperature resulted in more H 2 and CO production, higher carbon conversion efficiency and dry gas yield. The highest H 2 content of 53.29 mol%, and the highest H 2 yield of 38.60 mol H 2/kg MSW were observed at the highest temperature level of 950 °C, while, the maximum H 2 yield potential reached 70.14 mol H 2/kg dry MSW at 900 °C. Syngas produced by catalytic steam gasification of MSW varied in the range of 36.35–70.21 mol%. The char had a highest ash content of 84.01% at 950 °C, and negligible hydrogen, nitrogen and sulphur contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.