Abstract

Hydrogen isotope retention of tungsten in nuclear fusion reactors is one of the hot research issues all along. In this paper, tungsten samples in different rolled surfaces were polished by mechanical processing, subsequently subjected to D2+ irradiation and thermal desorption. To better understand the experimental observations, this study also performed molecular dynamics (MD) simulation and investigated the effects of temperature, grain number, grain boundary density, and crystal orientation on hydrogen retention. It is found that the grain number and grain boundary density of rolled tungsten increase successively in RD/TD, RD/ND, and TD/ND surfaces. The RD/ND surface exhibits the best hydrogen radiation resistance, whereas the TD/ND surface is unsatisfactory. MD simulations further indicate that hydrogen retention is more obvious with the increase of grain density in tungsten, and hydrogen atoms are more easily enriched at the grain boundaries. With the increase in temperature, the retention of hydrogen atoms in monocrystalline/polycrystalline tungsten decreases significantly. The average implantation depth of H atoms is deepest along the <111> and <112> crystalline directions, which reveals that hydrogen retention is dependent on the crystal orientations. The good agreement between the experimental data and simulation results reveals that grain boundaries play an important role in hydrogen retention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.