Abstract
ABSTRACTWe address aspects of hydrogen bonding and its thermal evolution in amorphous Silicon nitride films grown by Remote Plasma Enhanced Chemical Vapor Deposition (RPECVD) from SiH4 and NH3 (or ND3) source gases. Rapid Thermal Annealing (RTA) decreases the Si-H(D) and SiN-H(D) bond populations. The hydrogen bonds break, and H2 (HD, D2) forms and evolves from the film with the heat treatment. This molecular hydrogen release is accompanied by Si- and N- bond healing as detected by a SiN infra red stretch mode signal gain. The ex-situ RTA experiment temperatures ranged from 400 °C to 1200 °C, in 100 °C steps and the film structural changes were monitored by Fourier Transform Infrared spectroscopy (FTIR) after each incremental anneal. Gas flow ratios R=NH3/SiH4 > 2 produced films in which SiN-H(D) bonds dissociated, and a gas desorption rate equation estimated an activation energy barrier of Ea = 0.3 eV. The release of hydrogen from the films in the form of H2 (D2) and ammonia radicals was detected by mass spectrometry and is shown here. The re-bonding of nitrogen to silicon upon thermal dissociation of hydrogen's is consistent with the improvement of the electrical properties of a-SiN:H films following RTA treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.