Abstract

Vanadates and vanadium oxides are potential lithiumion electrode materials because of their easy preparation and high capacity properties. This paper reports the electrochemical lithium-storage performance of VO2 and NaV2O5 composite nanowire arrays. Firstly, Na5V12O32 nanowire arrays are fabricated by a hydrothermal method, and then VO2 and NaV2O5 composite nanowire arrays are prepared by a reduction reaction of Na5V12O32 nanowire arrays in hydrogen atmosphere. Crystal structure, chemical composition and morphology of the prepared samples are characterized in detail. The obtained composite is used as an electrode of a lithium-ion battery, which exhibits high reversible capacity and good cycle stability. The composite obtained at 500 °C presents a specific discharge capacity up to 345.1 mA × h/g after 50 cycles at a current density of 30 mA/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.