Abstract
Artificial neural network has generally been used for a quantity of tasks such as classification, prediction, clustering and association analysis in different application fields. To the best of our knowledge, there are few researches on breakthrough curve used artificial neural network. In this paper, an artificial neural network model is established for breakthrough curves prediction in relation to a ternary components gas with a two-layered adsorbent bed piled up with activated carbon (AC) and zeolite, and an optimization is concluded by the artificial neural network. The performance data which acquired by Aspen model has been utilized for training artificial neural network (ANN) model. The ANN model trained has great competence for making prediction of hydrogen purification performance of PSA cycle with impressive speed and rational accuracy. On the strength of the ANN model, we implemented an optimization for seeking first-rank PSA cycle parameters. The optimization is concentrated on the effect of inlet flow rate, pressure and layer ratio of activated carbon height to zeolite height. Furthermore, this paper shows that the PSA cycle's optimal operation parameters can be obtained by use of ANN model and optimization algorithm, the ANN model has been trained according to the data generated by Aspen adsorption model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.