Abstract
The production of hydrogen (H2) with a low concentration of carbon monoxide (CO) via steam reforming of methanol (SRM) over Au/CuO, Au/CeO2, (50:50)CuO–CeO2, Au/(50:50)CuO–CeO2, and commercial MegaMax 700 catalysts were investigated over reaction temperatures between 200°C and 300°C at atmospheric pressure. Au loading in the catalysts was maintained at 5wt%. Supports were prepared by co-precipitation (CP) whilst all prepared catalysts were synthesized by deposition–precipitation (DP). The catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy (SEM). Au/(50:50)CuO–CeO2 catalysts expressed a higher methanol conversion with negligible amount of CO than the others due to the integration of CuO particles into the CeO2 lattice, as evidenced by XRD, and a interaction of Au and CuO species, as evidenced by TPR. A 50:50 Cu:Ce atomic ratio was optimal for Au supported on CuO–CeO2 catalysts which can then promote SRM. Increasing the reaction time, by reducing the liquid feed rate from 3 to 1.5cm3h−1, resulted in a catalytic activity with complete (100%) methanol conversion, and a H2 and CO selectivity of ∼82% and ∼1.3%, respectively. From stability testing, Au/(50:50)CuO–CeO2 catalysts were still active for 540min use even though the CuO was reduced to metallic Cu, as evidenced by XRD. Therefore, it can be concluded that metallic Cu is one of active components of the catalysts for SRM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.