Abstract

Currently, there are several methods to produce spinel ferrite powder material such as sol-gel synthesis, self-propagating high-temperature synthesis (SHS), aerosol spray pyrolysis, and solution combustion synthesis (SCS). These methods have been shown to produce nominally phase pure ferrites for use in hydrogen generation by thermochemical water-splitting. Among these methods, the ferrites derived by SCS have not been fully investigated for hydrogen generation from thermochemical water-splitting. SCS, in general, has several advantages such as it being a simple synthesis that can be done relatively quickly and produces materials with high specific surface area. In this study, nickel, zinc, cobalt, and manganese ferrites were synthesized using SCS and analyzed by XRD, BET, and SEM. Each ferrite material was placed inside an Inconel tubular reactor and five consecutive thermochemical cycles to determine hydrogen production. The regeneration and water-splitting temperatures were performed with water-splitting and regeneration temperatures of 900°C and 1100°C, respectively. Nickel ferrite produced significantly higher average hydrogen volume as compared to the other ferrites over the five thermochemical cycles. However, all four ferrites showed a decrease in hydrogen volume generation with increase in consecutive water-splitting cycle, which could be due to the grain growth as observed by BET and SEM analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call