Abstract

The increase in the production of acid gas consisting of H2S, CO2, and associated impurities such as ammonia and hydrocarbons from oil and gas plants and gasification facilities has stimulated the interest in the development of alternative means of acid gas utilization to produce hydrogen and sulfur, simultaneously. The present literature lacks a detailed reaction mechanism that can reliably predict the thermal destruction of NH3 and its blend with H2S and CO2 to facilitate process optimization and commercialization. In this paper, a detailed mechanism of NH3 pyrolysis is developed and is merged with the reactions of NH3 oxidation and H2S/CO2 thermal decomposition from our previous works. The mechanism is validated successfully using different sets of experimental data on the pyrolysis and oxidation of NH3, H2S, and CO2. The proposed mechanism predicts the experimental data on NH3 pyrolysis remarkably better than the existing mechanisms in the literature. The mechanism is used to investigate the effects of NH3 concentration (0–20%) and reactor temperature (1000–1800 K) on the thermal decomposition of H2S and CO2. A synergistic effect is observed in the simultaneous decomposition of NH3 and CO2, i.e., NH3 conversion is improved in the presence of CO2 and the decomposition CO2 to CO is enhanced in the presence of NH3. The presence of H2S suppressed NH3 conversion, while the conversion of H2S remained unchanged with increasing NH3 concentration at temperature below 1400 K due to the low conversion of NH3 (up to 18%). At temperature above 1400 K, NH3 conversion increased rapidly and it triggered a decrease in H2S conversion as well as the yields of H2 and S2. The major reactions involved in the decomposition of H2S, CO2, and NH3 and the production of major products such as H2, S2, and CO are identified. The detailed reaction mechanism can facilitate the design and optimization of acid gas thermal decomposition to produce hydrogen and sulfur, simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call