Abstract

Cerium (Ce3+) doped TiO2 powder was synthesized by a sol-gel method and characterized by Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), UV–Vis Diffuse Reflectance Spectroscopy (UV-DRS), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The Ce3+ doping strongly reduced the band gap of the TiO2 from 3.2 eV (UV) to 2.7 eV (visible region). The photocatalytic activity of Ce3+ doped TiO2 catalysts was evaluated by hydrogen production from sulphide wastewater under visible light illumination. The photocatalytic production of H2 was studied in a batch recycle tubular photocatalytic reactor. The results show that 0.4% Ce3+–TiO2 suspended in 500 mL of simulated sulphide wastewater irradiated at 150 W visible lamp produced maximum H2 of 6789 μmol h−1. It was noticed that the Ce3+ doped TiO2 performs well than Nano TiO2 and P25 TiO2 photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.