Abstract

This work evaluated the performance of nickel-based catalysts supported on CaO and CaO–MgO–Al2O3 in the sorption enhanced steam reforming of ethanol (SESRE) aiming the production of high purity H2. The catalysts were prepared by sol-gel method and characterized by different methods: Temperature programmed reduction (TPR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with chemical element mapping, N2 physisorption and CO2 capture capacity determined by thermogravimetric analysis (TGA). XRD analysis showed that the predominant phases were CaO, MgO, CaCO3, Ca(OH)2 and NiO in the calcined samples and Ni0 in the reduced and passivated samples. TPR profiles indicated that all catalysts presented a high degree of reduction (Ni/CaMgAl-68 > Ni/CaMgAl-79 > Ni/Ca), although Ni/CaMgAl-X samples presented high reduction temperatures indicating the formation of NiAl2O4. The addition of MgO and Al2O3 to CaO was very beneficial since the deactivation coefficients, calculated by the TGA data modeling, decreased by a factor of 3.8 for Ni/CaMgAl-79 and by a factor of 4.3 for Ni/CaMgAl-68 when compared to the Ni/Ca catalyst. The catalytic tests in the SESRE showed that Ni/CaMgAl-79 catalyst had the best performance since it had the longest high purity hydrogen production time. In the pre-breakthrough period, the H2 mole fractions were close to 90% for all samples during all reaction cycles. After the reaction-regeneration cycles, the average crystallite size of CaO estimated by XRD increased around 38, 6 and 35% for Ni/Ca, Ni/CaMgAl-79 and Ni/CaMgAl-68, respectively. Thus, adding a dopant to the sorbent material proved to be an effective strategy to obtain a more stable catalyst capable to produce hydrogen of high purity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call