Abstract

In the present study, the hydrogen production of wood sawdust pyrolysis catalysed by TiO2 impregnated Al2O3 (TiO2/Al2O3) was investigated under temperatures of 600, 700 and 800 ℃. The catalyst preparation was made by wet impregnation method for enhanced hydrogen-rich gas production from catalytic pyrolysis of sawdust. Characterization and morphology of TiO2 doped Al2O3 nanoparticles were performed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and the gas product was analysed by gas chromatography. The presented TiO2 doped Al2O3 catalyst showed the highest H2 yield in sawdust pyrolysis as 17.04 mol/kg, and gas productivity 0.72 Nm3/kg biomass at temperatures of 800 °C. Furthermore, the carbon conversion rate of the sawdust pyrolysis was detected as 53.6% with the TiO2 doped Al2O3 catalyst. It was observed that TiO2 doped Al2O3 nanoparticles supplementation approximately 50% increased the hydrogen production of sawdust pyrolysis, compared to non-catalytic experiment of sawdust pyrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call