Abstract

We describe herein the novel application of a transition metal oxo complex, a cationic oxorhenium(V) oxazoline, in the production of molecular hydrogen (H2) from the catalytic hydrolytic oxidation of organosilanes. The main highlights of the reaction are quantitative hydrogen yields, low catalyst loading, ambient conditions, high selectivity for silanols, water as the only co-reagent, and no solvent requirement. The amount of hydrogen produced is proportional to the water stoichiometry. Thus, reaction mixtures of polysilyl organics such as HC(SiH3)3 and water contain potentially >6 wt % hydrogen. Kinetic and isotope labeling experiments have revealed a new mechanistic paradigm for the activation of Si-H bonds by oxometalates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.