Abstract

A dielectric barrier discharge, which was produced in a reactor a grooved electrode, was applied in the production of hydrogen from a mixture of water and ethanol. The influence of power on ethanol conversion, energy yield, gas composition and production of hydrogen, carbon monoxide, carbon dioxide, methane, ethylene and acetylene was studied. The substrates in a liquid phase were fed to the reactor. The energy required for heating and vaporizing the substrates was 9 to 11 times greater than the energy consumed in the chemical reactions. The highest ethanol conversion was 54%. It was obtained for the power of 30 W, but the energy efficiency was 3.72 mol (H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> )/kWh. In contrast, the highest energy efficiency was 4.41 mole of (H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> )/kWh. It was obtained for the power of 20 W, but the ethanol conversion was 44%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.