Abstract

One of the promising routes for hydrogen production consists of the dissociation of the water molecule through two-step thermochemical cycles based on iron oxides, i.e., ferrites. In a previous work, our group evaluated the activity of five commercial ferrites for this purpose, being Ni ferrite the one that exhibits the highest hydrogen production. In this work, the results obtained after a more exhaustive study of the thermochemical cycle based on a commercially available Ni ferrite are presented. Structural characterization of NiFe2O4 after each step of the thermochemical cycle is shown, as well as oxygen and hydrogen production over several cycles. In addition, kinetic parameters of this cycle are also studied, fitting the experimental data obtained under isothermal conditions to the most appropriate model among those ascribed to gas–solid non-catalytic multistep reaction systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.