Abstract
Multicomponent collaborative anaerobic fermentation has been considered a promising technology for treating perishable organic solid wastes and producing clean energy. This study evaluated the potential of hydrogen production by thermophilic dry anaerobic co-fermentation of food waste (FW) with garden waste (GW) or kitchen waste (KW) as co-substrate. The results showed that when the ratio of FW to GW was 60:40, the maximum cumulative hydrogen production and organic matter removal rate reached 85.28 NmL g−1 VS and 63.29%, respectively. When the ratio of FW to KW was 80:20, the maximum cumulative hydrogen production and organic matter removal rate reached 81.31 NmL g−1 VS and 61.91%, respectively. These findings suggest that thermophilic dry anaerobic co-fermentation of FW using GW or KW as co-substrate has a greater potential than single-substrate fermentation to improve hydrogen production and the organic matter removal rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.