Abstract

Thermodynamic analysis of steam reforming of different oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol) with and without CaO as CO2 sorbent is carried out to determine favorable operating conditions to produce high-quality H2 gas. The results indicate that the sorption enhanced steam reforming (SESR) is a fuel flexible and effective process to produce high-purity H2 with low contents of CO, CO2 and CH4 in the temperature range of 723–873K. In addition, the separation of CO2 from the gas phase greatly inhibits carbon deposition at low and moderate temperatures. For all the oxygenated hydrocarbons investigated in this work, thermodynamic predictions indicate that high-purity hydrogen with CO content within 20ppm required for proton exchange membrane fuel cell (PEMFC) applications can be directly produced by a single-step SESR process in the temperature range of 723–773K at pressures of 3–5atm. Thus, further processes involving water–gas shift (WGS) and preferential CO oxidation (COPROX) reactors are not necessary. In the case of ethanol and methanol, the theoretical findings of the present analysis are corroborated by experimental results from literature. In the other cases, the results could provide an indication of the starting point for experimental research. At P=5atm and T=773K, it is possible to obtain H2 at concentrations over 97mol% along with CO content around 10ppm and a thermal efficiency greater than 76%. In order to achieve such a reformate composition, the optimized steam-to-fuel molar ratios are 6:1, 9:1, 12:1 and 4:1 for ethanol, glycerol, n-butanol and methanol, respectively, with CaO in the stoichiometric ratio to carbon atom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call