Abstract

Abstract Conversion of crude pyrolysis bio-oil for H 2 production is investigated using a sequential process which alternates (i) cracking reaction steps, during which the bio-oil is converted to syngas and carbon stored on the catalyst and (ii) regeneration steps allowing to combust coke under an air flow. The performances of Pt and Rh catalysts supported on ceria-zirconia in powder form or deposited on cordierite monoliths are comparatively studied. From these data and calculated thermodynamic equilibrium, the co-existence of thermal and catalytic processes is demonstrated. A stable hydrogen productivity up to ca. 18 mmol of H 2 g −1 of bio-oil (∼50% H 2 in the gas stream) with a minimized methane formation (ca. 6%) is obtained with the monolith configuration. Both Pt and Rh-based catalysts allow a good control of carbon formation, the coke being fully combusted during the regeneration step. Slow deactivation phenomena and selectivity changes along time on stream, mostly observed for platinum powder samples, are related to changes in catalyst structure and to the peculiar role of oxygen stored in the zirconia-ceria support. The heat balance evaluation of the sequential cracking/regeneration cycle shows that the process could be auto-thermal, i.e., minimizing the energy input, being competitive with conventional steam-reforming process under the same operating temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.