Abstract

We have previously demonstrated that Chlamydomonas reinhardtii can produce hydrogen under strictly photoautotrophic conditions during sulfur deprivation [Tsygankov et al. (2006); Int J Hydrogen Energy 3:1574-1584]. The maximum hydrogen photoproduction was achieved by photoautotrophic cultures pre-grown under a low light regime (25 microE m(-2) s(-1)). We failed to establish sustained hydrogen production from cultures pre-grown under high light (100 microE m(-2) s(-1)). A new approach for sustained hydrogen production by these cultures is presented here. Assuming that stable and reproducible transition to anerobiosis as well as high starch accumulation are important for hydrogen production, the influence of light intensity and dissolved oxygen concentration during the oxygen evolving stage of sulfur deprivation were investigated in cultures pre-grown under high light. Results showed that light higher than 175 microE m(-2) s(-1) during sulfur deprivation induced reproducible transition to anerobiosis, although the total amount of starch accumulation and hydrogen production were insignificant. The potential PSII activity measured in the presence of an artificial electron acceptor (DCBQ) and an inhibitor of electron transport (DBMIB) did not change in cultures pre-grown under 20 microE m(-2) s(-1) and incubated under 150 microE m(-2) s(-1) during sulfur deprivation. In contrast, the potential PSII activity decreased in cultures pre-grown under 100 microE m(-2) s(-1) and incubated under 420 microE m(-2) s(-1). This indicates that cultures grown under higher light experience irreversible inhibition of PSII in addition to reversible down regulation. High dissolved O(2) content during the oxygen evolving stage of sulfur deprivation has a negative regulatory role on PSII activity. To increase hydrogen production by C. reinhardtii pre-grown under 100 microE m(-2) s(-1), cultures were incubated under elevated PFD and decreased oxygen pressure during the oxygen evolving stage. These cultures reproducibly reached anaerobic stage, accumulated significant quantities of starch and produced significant quantities of H(2). It was found that elevation of pH from 7.4 to 7.7 during the oxygen producing stage of sulfur deprivation led to a significant increase of accumulated starch. Thus, control of pH during sulfur deprivation is a possible way to further optimize hydrogen production by photoautotrophic cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.