Abstract

Ethanol steam reforming (ESR) is a technology of great promise for hydrogen production but designing highly efficient, green and inexpensive Ni-based catalysts for inhibiting metal sinter and carbon deposition and increasing catalyst activity and stability is still a key challenge. In this paper, the M-Ni/Sepiolite catalysts (M-Ni/SEP, M = La, Mg or Ca) were synthesized using a hydrothermal-assisted impregnation method. The results from characterizations such as N2 adsorption-desorption, XRD, H2-TPR, XPS, HRTEM and NH3/CO2-TPD showed that La, Mg and Ca promoters can facilitate the dispersion and exposure of Ni0 active sites, enhance the metal-support interaction and modify surface acid/alkaline sites. Furthermore, the results of catalyst activity tests in ESR demonstrated that the Ca–Ni/SEP catalyst exhibited the highest carbon conversion of 95% and hydrogen yield of 65%, attributed to the small mean Ni particle size, strong metal-support interaction, abundant surface Ni0 active sites and modified surface alkaline/acid sites. According to the carbon deposition analyses, it was observed in Ca–Ni/SEP that the carbon deposition amount was evidently decreased, and the graphitic degree of coke was increased due to the increased metal site amount.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call