Abstract

The [FeFe]-hydrogenase CpHydA from Clostridium perfringens was immobilized by adsorption on anatase TiO2 electrodes for clean hydrogen production. The immobilized enzyme proved to perform direct electron transfer to and from the electrode surface and catalyses both H2 oxidation (H2 uptake) and H2 production (H2 evolution) with a current density for H2 evolution of about 2mAcm−1. The TiO2/CpHydA bioelectrode remained active for several days upon storage and when a reducing potential was set, H2 evolution occurred with a mean Faradaic efficiency of 98%. The high turnover frequency of H2 production and the tight coupling of electron transfer, resulting in a Faradaic efficiency close to 100%, support the exploitation of the novel TiO2/CpHydA stationary electrode as a powerful device for H2 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.