Abstract
Herein, we employed the hydrogen-producing hyperthermophilic bacterial strain Caldicellulosiruptor changbaiensis for preparing uniform and size-tunable gold nanoparticles (AuNPs). Compared with the commonly used chemically synthesized nanoparticles, the biological synthesis of nanoparticles appears to be a suitable process since it has a low manufacturing cost of scalability, good biocompatibility, and better nanoparticles stabilization. The produced AuNPs possessed a unique property, whereby the smallest AuNPs exhibited the highest peroxidase activity over a broad pH range, even at neutral pH, which was quite different from the commonly chemical-synthesized ones. Also, when the size of AuNPs increased, the peroxidase activity of B-AuNPs at neutral pH decreased. Owing to the excellent antibacterial capability of ROS, the AuNPs exhibited striking antibacterial properties against both Gram-positive and Gram-negative bacteria, and moreover, the AuNPs showed excellent ability to disperse bacterial biofilms both in vitro and in vivo. Our studies indicate that living bacterial cells, as a biosynthesizer, can synthesize size-controllable AuNPs with improved bioactivity. This work may promote the design and synthesis of other types of metal nanoparticles with defined properties for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.