Abstract

Pressure-composition isotherms (PCTs) for amorphous and icosahedral (i) quasicrystal powders produced by mechanical alloying of Ti45Zr38Ni17 powder mixtures were measured at temperatures of 473 K and 523 K at low-hydrogen pressures, lower than 0.1 MPa. Sloping plateau-like features on PCTs were observed at equilibrium hydrogen pressures lower than 1 kPa, below an H/M (hydrogen to metal atom ratio)≈1.2 and ≈1 for the amorphous and i-phase powders respectively. The plateau-like region for the i-phase powder was steeper and narrower than that for the amorphous powder, implying some small differences between the local structures of the i-phase and the amorphous phase. After the PCT measurements, an increase in the nearest-neighbor atom spacing and an expansion of the quasilattice were observed for the amorphous and i-phase powders respectively. Impurities from some unsynthesized elemental material and a Ti2Ni type phase were also present. These also absorbed hydrogen, shown by an expansion of their crystal lattices. However, no crystal hydride formation was observed in any of the powders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.