Abstract

Nd–Fe–B-based alloy powders were subjected to the dynamic hydrogen disproportionation desorption recombination treatment and the effect of the hydrogen pressure and temperature conditions in the disproportination step on magnetic anisotropy as well as the state of disproportionated samples was investigated. Magnetic anisotropy was maximized when the sample was hydrogen disproportionated at 30 kPa and 800 °C–820 °C. The analyses of the X-ray diffraction (XRD) patterns showed that the iron boride phase formed during the hydrogen disproportionation step crystallized in the tetragonal structure. The lattice parameters and the peak intensity of this iron boride phase in XRD patterns varied depending on the disproportionation conditions. Both magnetic anisotropy and iron boride peak intensity became stronger when the disproportionation condition was close to the boundary of disproportionation and recombination reactions. These results suggest that there is some kind of relationship between magnetic anisotropy and the state of iron boride phase in disproportionated samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.