Abstract
The performance of a hydrogen-powered, electrochemically-driven CO2 separator (EDCS) was demonstrated at cathode inlet CO2 concentrations from 400 ppm to 5,000 ppm. The impact of current density and CO2 concentration were evaluated to predict operating windows for various applications. The single-cell data was used to scale a 100 cm2, multi-cell stack using a shorted-membrane design for four applications: direct air capture (DAC), hydroxide exchange membrane fuel cell (HEMFC) air pretreatment, submarine life support, and space habitation. For DAC, a 339-cell EDCS stack (7.7 L, 17 kg) was projected to remove 1 tonne CO2 per year. The addition of the EDCS in HEMFC systems would result in nearly a 30% increase in volume, and therefore further improvements in performance would be necessary. A module containing five 338-cell EDCS stacks (38 L, 85 kg) in parallel can support a 150 person crew at 2.1% of the volume of the liquid amine system employed in submarines. For space habitation, a 109-cell EDCS stack (3.2 L, 10 kg) is adequate for 6 crewmembers, and is less than 1% the size and 5% the weight of the current CO2 removal system installed on the International Space Station.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.