Abstract

Low temperature (250–350 °C) hydrogen plasma annealing (HPA) treatments have been performed on amorphous hydrogenated silicon nitride (a-SiNx:H) thin films having a range of compositions and subsequent modification of photoluminescence (PL) is investigated. The PL spectral shape and peak positions for the as deposited films could be tuned with composition and excitation energies. HPA induced modification of PL of these films is found to depend on the N/Si ratio (x). Upon HPA, the PL spectra show an emergence of a red emission band for x ≤ 1, whereas an overall increase of intensity without change in the spectral shape is observed for x > 1. The emission observed in the Si rich films is attributed to nanoscale a-Si:H inclusions. The enhancement is maximum for off-stoichiometric films (x ∼ 1) and decreases as the compositions of a-Si (x = 0) and a-Si3N4 (x = 1.33) are approached, implying high density of non-radiative defects around x = 1. The diffusion of hydrogen in these films is also analyzed by Elastic Recoil Detection Analysis technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call