Abstract

Amorphous calcium phosphate (ACP) is an intriguing mineral phase of calcium phosphate in its own right, in addition to its relevance in biomineralization. We hereby demonstrate that ACPs prepared by different synthetic routes such as the crosslinking of inorganic oligomers and polymer-induced liquid precursors have distinctive relative compositions of orthophosphate and hydrogen phosphate, and the extent of their hydrogen bonding with water. For all the ACPs or ACP-derived materials studied in this work, the species of hydrogen phosphate is the most important structural element. Depending on the synthetic pathways, orthophosphate and water, as well as their associated hydrogen bonds, may also play a role in the structural formation of ACPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.