Abstract
Hydrogen peroxide (H2O2) elicited concentration-dependent relaxation of endothelium-denuded rings of porcine coronary arteries. The relaxation induced by the H2O2 was markedly attenuated by 10 microM 1H-[1,2,4]oxadiazolo [4,3,a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase, or by 100 nM charybdotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels. A combination of the ODQ and charybdotoxin abolished the H2O2-induced relaxation. Pretreatment with 25 microM of an Rp stereoisomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), 20 microM glibenclamide, or 1 mM 4-aminopyridine did not affect the vascular response to H2O2. The presence of catalase at 1000 U/ml significantly attenuated the H2O2-induced relaxation. Exposure of cultured smooth muscle cells to H2O2 activated KCa channels in a concentration-dependent manner in cell-attached patches. Pretreatment with catalase significantly inhibited the activation of KCa channels. Rp-cAMPS did not inhibit the H2O2-induced activation of KCa channels. The activation of KCa channels by H2O2 was markedly decreased in the presence of ODQ. However, even in the presence of ODQ, H2O2 activated KCa channels in a concentration-dependent manner. In inside-out patches, H2O2 significantly activated KCa channels through a process independent of cyclic guanosine 3',5'-monophosphate (cGMP). In conclusion, H2O2 elicits vascular relaxation due to activation of KCa channels, which is mediated partly by a direct action on the channel and partly by activation of soluble guanylate cyclase, resulting in the generation of cGMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.