Abstract

We investigated the role and mechanism of H2O2 in regulation of NaCl transport in primary inner medullary collecting duct (IMCD) cells. IMCD cells were isolated from wild-type mice and grown onto semipermeable membranes, and short-circuit current (Isc) was determined by Ussing chamber. Exposure of IMCD cells to H2O2 at a range of 100-300 microM caused a rapid increase in Isc in a time- and dose-dependent manner. This increase was almost abolished by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitors diphenylamine-2-carboxylic acid (DPC) and CFTR inhibitor-172. In contrast, the magnitude of stimulation was unaffected by the epithelial Na+ channel (ENaC) inhibitor amiloride. The H2O2-induced Cl(-) secretion was significantly inhibited by indomethacin, as well as by microsomal PGE synthase-1 (mPGES-1) deficiency. Like H2O2, PGE2 treatment induced a twofold increase in Isc that was reduced by the protein kinase A (PKA) inhibitors H-89 and KT5720. These data suggest that H2O2 stimulates CFTR Cl(-) channel-mediated Cl(-) secretion through cyclooxygenase- and mPGES-1-dependent release of PGE2 and subsequent activation of PKA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.