Abstract

A novel sensor for hydrogen peroxide (H2O2) was fabricated using β-MnO2 nanorods on a glassy carbon electrode (GCE). The nanorods were obtained by a hydrothermal method and characterized by scanning electron microscopy and X-ray diffraction. Cyclic voltammetry was used to evaluate the electrochemical performance of the modified GCE. The sensor exhibits excellent catalytic activity toward the oxidation of H2O2 and displays a rather wide linear range (from 2.5 μM to 42.9 mM), high sensitivity (21.74 μA·mM−1), a low detection limit (2.45 μM at an S/N of 3), and a response time of <5 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call