Abstract
BackgroundA potentially lethal flux of hydrogen peroxide (H2O2) is continuously generated during aerobic metabolism. It follows that aerobic organisms have equipped themselves with specific H2O2 dismutases and H2O2 reductases, of which catalase and the alkyl hydroperoxide reductase (AhpR) are the best-studied prokaryotic members. The sequenced Haemophilus influenzae Rd genome reveals one catalase, designated HktE, and no AhpR. However, Haemophilus influenzae type b strain Eagan (Hib), a causative agent of bacterial sepsis and meningitis in young children, disrupted in its hktE gene is not attenuated in virulence, and retains the ability to rapidly scavenge H2O2. This redundancy in H2O2-scavenging is accounted for by peroxidatic activity which specifically uses glutathione as the reducing substrate.ResultsWe show here that inside acatalasaemic H. influenzae all of the residual peroxidatic activity is catalyzed by PGdx, a hybrid peroxiredoxin-glutaredoxin glutathione-dependent peroxidase. In vitro kinetic assays on crude hktE- pgdx- H. influenzae Rd extracts revealed the presence of NAD(P)H:peroxide oxidoreductase activity, which, however, appears to be physiologically insignificant because of its low affinity for H2O2 (Km = 1.1 mM). Hydroperoxidase-deficient hktE- pgdx- H. influenzae Rd showed a slightly affected aerobic growth phenotype in rich broth, while, in chemically defined medium, growth was completely inhibited by aerobic conditions, unless the medium contained an amino acid/vitamin supplement. To study the role of PGdx in virulence and to assess the requirement of H2O2-scavenging during the course of infection, both a pgdx single mutant and a pgdx/hktE double mutant of Hib were assayed for virulence in an infant rat model. The ability of both mutant strains to cause bacteremia was unaffected.ConclusionCatalase (HktE) and a sole peroxidase (PGdx) account for the majority of scavenging of metabolically generated H2O2 in the H. influenzae cytoplasm. Growth experiments with hydroperoxidase-deficient hktE- pgdx- H. influenzae Rd suggest that the cytotoxicity inflicted by the continuous accumulation of H2O2 during aerobic growth brings about bacteriostasis rather than bacterial killing. Finally, H2O2-scavenging is not a determinant of Hib virulence in the infant rat model of infection.
Highlights
A potentially lethal flux of hydrogen peroxide (H2O2) is continuously generated during aerobic metabolism
Growth experiments with hydroperoxidase-deficient hktE- pgdx- H. influenzae Rd suggest that the cytotoxicity inflicted by the continuous accumulation of H2O2 during aerobic growth brings about bacteriostasis rather than bacterial killing
Hydroperoxidase-deficiency inflicted in either an Rd or an Eagan background resulted in wild-type growth, generation after generation, in rich sBHI broth, while in chemically defined MIc medium supplemented with all 20 amino acids, a slight aerobic growth defect is manifested as the postponement of nearly wild-type exponential growth to lower-than-wild-type stationary phase cell densities. These results imply that endogenouslygenerated H2O2 is bacteriocidal to E. coli, while being rather bacteriostatic to H. influenzae. This difference in cytotoxic behaviour of H2O2 can not be attributed to quantitative differences, since we have previously reported that aerobically grown H. influenzae Rd cells produce H2O2 at a similar rate (~12.4 μM/s) as has been established for E. coli [11,19]
Summary
A potentially lethal flux of hydrogen peroxide (H2O2) is continuously generated during aerobic metabolism It follows that aerobic organisms have equipped themselves with specific H2O2 dismutases and H2O2 reductases, of which catalase and the alkyl hydroperoxide reductase (AhpR) are the best-studied prokaryotic members. Haemophilus influenzae type b strain Eagan (Hib), a causative agent of bacterial sepsis and meningitis in young children, disrupted in its hktE gene is not attenuated in virulence, and retains the ability to rapidly scavenge H2O2. This redundancy in H2O2-scavenging is accounted for by peroxidatic activity which uses glutathione as the reducing substrate Because of the ubiquity of O2-/H2O2-scavenging enzymes among oxygen-respiring organisms, it follows that scavenging should hold a prominent place among the protective measures against oxygen toxicity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.