Abstract
The effect of H2O2 on the primary structure of OxyHb was studied. Upon treatment of OxyHb with H2O2 ([Heme]/[H2O2] = 1), tryptophan and methionine residues of the beta-chain were modified. Treatment of ApoHb with H2O2 resulted in the modification of histidine and methionine residues in both globin chains. Tryptophan residues were unaffected. Modification of methionine residues in both the beta-chain of OxyHb and ApoHb probably results from the direct oxidation of methionine by H2O2. The modification of histidine residues in ApoHb may be mediated by a metal-catalyzed oxidation system comprised of H2O2 and histidine-bound iron. The H2O2-mediated modification of tryptophan in the OxyHb beta-chain, however, requires the heme moiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.