Abstract
MT mitigates chilling damage by enhancing antioxidant system and photosystem activities, and cold-responsive genes expression in cucumbers. H2O2 may act as a downstream signaling molecule in the MT-induced chilling tolerance. Melatonin (MT) and hydrogen peroxide (H2O2) are important endogenous signaling molecules that play multifaceted roles in plant responses to abiotic stress. However, the interactive mechanism by which MT and H2O2 regulate chilling tolerance remains unclear. Here we found that MT exhibited a positive regulatory effect on the chilling tolerance of cucumbers, with an optimum concentration of 100µM. MT markedly enhanced RBOH1 mRNA expression, activity and endogenous H2O2 accumulation in cucumber seedlings. However, 1.0mM H2O2 had no significant effect on mRNA levels of TDC and ASMT, the key genes for MT synthesis, and endogenous MT content. Both MT and H2O2 significantly decreased malondialdehyde (MDA), electrolyte leakage (EL) and chilling injury index (CI) by activating the antioxidant system, thereby alleviating chilling damage in cucumber seedlings. MT and H2O2 improved photosynthetic carbon assimilation, which was primarily attributed to an increase in activity, mRNA expression, and protein levels of RuBPCase and RCA. Meanwhile, MT and H2O2 induced the photoprotection for both PSII and PSI by enhancing the QA's electron transport capacity and elevating protein levels of the photosystems. Moreover, MT and H2O2 significantly upregulated the expression of cold response genes. MT-induced chilling tolerance was attenuated by N', N'-dimethylthiourea (DMTU), a H2O2 specific scavenger. Whereas, the MT synthesis inhibitor (p-chlorophenylalanine, p-CPA) did not influence H2O2-induced chilling tolerance. The positive regulation of MT on the antioxidant system, photosynthesis and cold response gene levels were significantly attenuated in RBOH1-RNAi plants compared with WT plants. These findings suggest that H2O2 may functions as a downstream signaling molecule in MT-induced chilling tolerance in cucumber plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.