Abstract

Apoptosis is an important cell death system that deletes damaged and mutated cells, preventing the induction of cancer. We previously have reported that UV irradiation inhibited the apoptosis induced by serum starvation and cell detachment. This phenomenon is suitable for clarifying the relationship between cancer and the dysregulation of apoptosis by UV irradiation. Here, we have studied the factors responsible for this inhibition of apoptosis, focusing on reactive oxygen species (ROS) and DNA damage. Treatment with xanthine oxidase in the presence of hypoxanthine, which is known to produce superoxide anion (O2•−) and hydrogen peroxide (H2O2), inhibited the induction of apoptosis. The xanthine oxidase-induced anti-apoptotic effect was suppressed in the presence of an H2O2-eliminating enzyme, catalase, but not in the presence of an O2•−-eliminating enzyme, superoxide dismutase. Treatment with H2O2 itself significantly inhibited the induction of apoptosis. Furthermore, the effect of the inhibition of cell death by UVB irradiation and by H2O2 treatment decreased in H2O2-resistant cells. Although both UVB and H2O2 are known to induce DNA damage, other DNA damaging agents, like γ-irradiation and treatment with cisplatin and bleomycin, showed no inhibition of apoptosis. These findings suggested that H2O2 was essential to the inhibition of apoptosis, in which DNA damage had no role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call