Abstract
Oxidative stress induces excessive apoptosis resulting in the reduction of intervertebral disc cells, the consequent reduction of extracellular matrix (ECM) synthesis, and compositional changes, which is the pathological basis for intervertebral disc degeneration (IVDD). The present study explored the activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway in the H2O2-induced nucleus pulposus (NP) cell apoptosis. Human degenerated intervertebral discs were collected from Lumbar disc surgery. NP cells isolated from the tissues were cultured with H2O2 to induce apoptosis in vitro. Malondialdehyde (MDA) analysis was performed to determine the reactive oxygen species (ROS) of the tissue. Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) were performed to analyze collagen II, ATF4, CHOP, and caspase-9 gene expression. Flow cytometry was used to determine the apoptotic ratio of NP cells. siRNA was also used to silence ATF4 and CHOP gene expression. NP tissues in higher degenerated degree underwent much more MDA, expressed less collagen II, more ATF4, CHOP, and caspase-9 compared with the mildly degenerated tissues. H2O2 induced NP cell apoptosis by upregulating expression of ATF4, CHOP and caspase-9. The silencing of ATF4 or CHOP alleviated NP cell apoptosis by suppressing caspase-9 expression. Inhibiting caspase-9 did not affect ATF4 and CHOP expression but protected NP cells from apoptosis. In this study, we found H2O2 could promote NP cell apoptosis by activating the ATF4/CHOP signaling pathway resulting in the upregulation of caspase-9. Interdict of ATF4, CHOP, or caspase-9 contributed to the reduction of apoptosis caused by H2O2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.