Abstract

The relation between the oxidative burst and phenylpropanoid pathways has been studied using the sugarcane cultivar C86-56, which does not release phenolics in agar-base micropropagation systems. In stationary liquid culture, a significant production of phenolic compounds and plant survival were determined in sugarcane plants treated with 5mM H2O2. The spectrophotometer determinations and the gene expression analysis corroborated that releasing of phenolics and soluble θ-quinones was induced during the first 24h of treatment. In comparison with the control treatments, sugarcane plants treated with H2O2 demonstrated differences in the micropropagation-related variables when multiplied in Temporary Immersion Bioreactors (TIBs) supplemented with polyethyleneglycol (PEG 20%). Expression of selected genes related to photosynthesis, ethylene, auxins, oxidative burst, and defense pathways were confirmed during the entire PEG 20% stress in the plants coming from the 5mM H2O2 treatment; whereas, much more heterogeneous expression patterns were evidenced in plants stressed with PEG but not previously treated with H2O2. RT-PCR expression analysis supports the hypothesis that while H2O2 induces the oxidative burst, the phenylpropanoids pathways elicit and maintain the defensive response mechanism in micropropagated sugarcane plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.