Abstract

Hydrogen peroxide (H2O2) is an important intra- and extra-cellular signaling molecule that can determine cell fate. At low concentrations, H2O2 plays roles in proliferation, immunity, and metabolism. Cellular exposure to higher non-physiologic concentrations of H2O2 can result in oxidative stress. If the stress is not alleviated, cell death can ensue. In the past, few studies were done to study the key mediators of H2O2-induced cell death. The advancement of genetic screening technology with CRISPR/Cas9 tools has allowed for in depth genome-wide studies to identify key mediators in different cell types. Here, we briefly explore the role of H2O2 in the cell and the essential mediators of H2O2-induced cell death with a focus on riboflavin, an unexpected essential mediator of H2O2-induced cell death.

Highlights

  • Sies first described oxidative stress in 1985 as the intracellular process that occurs when the balance between reactive oxygen species (ROS) and the cellular antioxidant defense system is perturbed, and the levels of the ROS exceed cellular homeostatic concentrations [1,2,3]

  • When H2O2 levels increase beyond homeostatic concentrations, oxidative stress occurs and if it is not alleviated through antioxidant responses, cell death can occur [6]

  • We discuss two antioxidant response systems that are involved in the alleviation of H2O2-induced oxidative stress, namely, the nuclear factor erythroid 2-related factor 2 (Nrf2) axis, and riboflavin, known as vitamin B2

Read more

Summary

Oxidative Stress

Sies first described oxidative stress in 1985 as the intracellular process that occurs when the balance between reactive oxygen species (ROS) and the cellular antioxidant defense system is perturbed, and the levels of the ROS exceed cellular homeostatic concentrations [1,2,3]. When H2O2 levels increase beyond homeostatic concentrations, oxidative stress occurs and if it is not alleviated through antioxidant responses, cell death can occur [6]. Cells launch a wide range of antioxidant responses that are designed to scavenge ROS. We discuss two antioxidant response systems that are involved in the alleviation of H2O2-induced oxidative stress, namely, the nuclear factor erythroid 2-related factor 2 (Nrf2) axis, and riboflavin, known as vitamin B2. Regulate a plethora of genes (almost 200 genes) that are involved in cellular defense against oxidative stress [9]

Some of the activated proteins that are involved in reducing
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.