Abstract

Previously, we have reported that endothelial nitric oxide synthase (eNOS) promoter activity is decreased in pulmonary arterial endothelial cells (PAECs) in response to hydrogen peroxide (H(2)O(2)). Thus the objective of this study was to identify the cis-element(s) and transcription factor(s) responsible for oxidant-mediated downregulation of the eNOS gene. Initial promoter experiments in PAECs treated with H(2)O(2) revealed a significant decrease in activity of a promoter fragment containing 840 bp of upstream sequence of the human eNOS gene fused to a luciferase reporter. However, a promoter construct containing only 640 bp of upstream sequence had a significantly attenuated response to H(2)O(2) challenge. As the 840-bp promoter construct had a putative binding site for the transcription factor activator protein-1 (AP-1) that was lacking in the 640-bp construct, we evaluated the effect of H(2)O(2) on promoter activity after mutation of the AP-1 binding sequence (TGAGTCA at -661 to TGAGTtg in the 840-bp construct). Similar to the results seen with the 640 bp, the AP-1 mutant promoter had a significantly attenuated response to H(2)O(2). EMSA revealed decreased binding of AP-1 during H(2)O(2) treatment. Supershift analysis indicated that the AP-1 complex consisted of a c-Jun and FosB heterodimer. Furthermore, in vitro EMSA analysis indicated the c-Jun binding was significantly decreased after H(2)O(2) exposure. Using chromatin immunoprecipitation analysis, we demonstrated decreased binding of AP-1 to the eNOS promoter in vivo in response to H(2)O(2). These data suggest a role of decreased AP-1 binding likely through c-Jun in the H(2)O(2)-mediated decrease in eNOS promoter activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call