Abstract

Direct electrocatalytic oxidation of benzene has been regarded as a promising approach for achieving high-value phenol product, but remaining a huge challenge. Here an oxygen-coordinated nickel single-atom catalyst (Ni-O-C) is reported with bifunctional electrocatalytic activities toward the two-electron oxygen reduction reaction (2e- ORR) to H2 O2 and H2 O2 -assisted benzene oxidation to phenol. The Ni-(O-C2 )4 sites in Ni-O-C ar proven to be the catalytic active centers for bifunctional 2e- ORR and H2 O2 -assisted benzene oxidation processes. As a result, Ni-O-C can afford a benzene conversion as high as 96.4 ± 3.6% with a phenol selectivity of 100% and a Faradaic efficiency (FE) of 80.2 ± 3.2% with the help of H2 O2 in 0.1m KOH electrolyte at 1.5V (vs RHE). A proof of concept experiment with Ni-O-C concurrently as cathode and anode in a single electrochemical cell demonstrates a benzene conversion of 33.4 ± 2.2% with a phenol selectivity of 100% and a FE of 44.8 ± 3.0% at 10mA cm-2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.