Abstract

Abstract In the current scenario treatment of industrial waste water is big challenge especially waste water that contain high organic load. Hydrogen peroxide assisted electrocoagulation (EC) process provides better result to treat highly polluted wastewater as compared to EC alone. However, hydrogen peroxide is well known as a strong oxidant, which cast a potential threat to human health. To overcome this problem hydrogen peroxide has been used here for treatment of wastewater in small quantity, and that consume during the process. Therefore the harmful effect of hydrogen peroxide in human and aquatic life could be minimized. This work is an attempt to treat biodigester effluent (BDE) using H2O2 assisted EC processes with respect to chemical oxygen demand (COD) and color reductions. To perform this experiment both iron and aluminum electrodes are used as an electrode material in the presence of H2O2. In case of iron electrode the maximum COD and color reduction efficiency of 98.3 and 83.6% was achieved at the cost of 1.5 Wh/dm3 energy consumption while maximum COD and color removal efficiency of 96.8 and 77.1% with 1.7 Wh/dm3 of energy consumption was observed in the aluminum electrode based EC process. A part from this conventional biological process (i.e., activated sludge treatment, ponds, and lagoon etc.) and physiochemical treatment process (i.e., coagulation, adsorption) provided treatment efficiency of 40–80% hence hydrogen peroxide assisted EC process should a better choice to treat distillery effluent. Furthermore, hybrid EC process was also performed with iron used as anode and aluminum as cathode in the presence of H2O2. Iron electrode based peroxi-EC process provided better result at optimum operating conditions; current density of 114 A/m2, initial COD concentration of 12,000 mg/dm3, initial pH of 7.3, H2O2 concentration of 120 mg/dm3, stirring speed of 120 rpm and electrolysis time of 90 min. The cost estimated for operation is 1.56 US $/m3. Finally, sludge analysis and cost optimization are also incorporated in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call