Abstract
The use of plasma-activated liquids such as PBS, medium or simply plasma-activated water (PAW) has been receiving increasing attention for applications in cancer treatments. Amongst the reactive species contained in these solutions, hydrogen peroxide appears to play a pivotal role in causing cytotoxic effects. H2O2 concentrations can be correlated with reduced cell viability and growth and used as an indicator of the potential efficacy of a plasma-activated liquid. To investigate the cytotoxic mediators generated in water specific to high-voltage DBD-ACP. Using a high-voltage dielectric barrier atmospheric cold plasma (DBD-ACP) system, we examined PAW-mediated cytotoxic effects on different mammalian cell lines employing a set-up where short-lived reactive species can be discounted and activated liquids with long-term stability are generated. The PAW potency could be modulated using voltage level, treatment time and post-treatment storage time and target-related characteristics such as surface to volume ratio. All of these parameters effected cell viability in a hydrogen peroxide concentration correlated manner. The susceptibility of two cancer cell lines to PAW was similar to that observed for two non-cancer cell lines and the toxicity of plasma-activated water exceeded that of the corresponding hydrogen peroxide concentrations. In cytotoxic plasma activated water an essential role for H2O2 has been demonstrated multi-fold, yet further contributing factors are apparent and remain to be identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.