Abstract

In this study, the oxide film on X80 steel was fabricated to decrease hydrogen embrittlement of pipeline steel. The microstructures and mechanical properties in 10MPa hydrogen gas and hydrogen permeation properties were investigated. The phase structure of oxide film was mainly composed of Fe2O3. With the increasing of oxidation temperature, surface oxygen content improves gradually. Oxide film plays an important role in resisting hydrogen penetrating. Hydrogen diffusion coefficient decreases from 38.81☓10-7cm2s-1 to 1.26☓10-7 cm2s-1 for oxidation at 450 ℃. The plastic deformation increases obviously after oxidation. HEI decreases from 40.96% to 11.61% for oxidation at 450 ℃.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call