Abstract

Understanding the permeation behavior of tritium from a pebble bed breeding blanket is essential for establishing a self-sufficient fuel cycle in a nuclear fusion reactor. It is known that double corrosion layers forms on reduced activation ferritic-martensitic (RAFM) steel surface by gas release from a ceramic breeder material, however, its effect on hydrogen permeation behavior has not been elucidated. Herein, in-situ measurement of hydrogen permeation through an F82H RAFM wall of a ceramic breeder pebble bed was performed under H2-added sweep gas conditions. The corrosion layer formed on the F82H sample had a dense microstructure, which reduced hydrogen permeation flux at least by one order of magnitude. The permeation reduction factors were 20–50 at the water-coolant temperature of a blanket. A self-repairing ability is expected for the surface oxide layer as the corrosion occurs spontaneously inside a breeding blanket.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call