Abstract

High-accuracy spectroscopy of hydrogen molecular ions has important applications for the metrology of fundamental constants and tests of fundamental theories. Up to now, the experimental resolution has not surpassed the part-per-billion range. We discuss two methods by which it could be improved by a huge factor. Firstly, the feasibility of Doppler-free quasidegenerate two-photon spectroscopy of trapped and sympathetically cooled ensembles of HD+ ions is discussed, and it is shown that rovibrational transitions may be detected with a good signal-to-noise ratio. Secondly, the performance of a molecular quantum-logic ion clock based on a single Be+-H2+ ion pair is analyzed in detail. Such a clock could allow testing the constancy of the proton-to-electron mass ratio at the 10-17/yr level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.