Abstract

Hydrogen Mixing Studies (HMS) is a best-estimate analysis tool for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It can model geometrically complex facilities having multiple compartments and internal structures. The code can simulate the effects of steam condensation, heat transfer to walls and internal structures, chemical kinetics, and fluid turbulence. The gas mixture may consist of components included in a built-in library of 20 species. HMS is a finite-volume computer code that solves the time-dependent, three-dimensional (3D) compressible Navier Stokes equations. Both Cartesian and cylindrical coordinate systems are available. Transport equations for the fluid internal energy and for gas species densities are also solved. HMS was originally developed to run on Cray-type supercomputers with vector-processing units that greatly improve the computational speed, especially for large, complex problems. Recently the code has been converted to run on Sun workstations. Both the Cray and Sun versions have the same built-in graphics capabilities that allow 1D, 2D, 3D, and time-history plots of all solution variables. Other code features include a restart capability and flexible definitions of initial and time-dependent boundary conditions. This manual describes how to use the code. It explains howmore » to set up the model geometry, define walls and obstacles, and specify gas species and material properties. Definitions of initial and boundary conditions are also described. The manual also describes various physical model and numerical procedure options, as well as how to turn them on. The reader also learns how to specify different outputs, especially graphical display of solution variables. Finally sample problems are included to illustrate some applications of the code. An input deck that illustrates the minimum required data to run HMS is given at the end of this manual.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call