Abstract

Previous experimental studies of H permeation in 9%Cr-Fe alloys have found a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure annealed Fe. In an effort to shed some light on the microscopic origin of these findings, we perform an extensive study of Fe, Cr, and H migration in a high-angle symmetric tilt grain boundary in bcc Fe, both via vacancy and interstitial mechanism. This is undertaken in the framework of transition state theory with the relevant energies obtained from classical interatomic potentials, and partially from Density Functional Theory calculations, in order to check the consistency of structures. Trapping sites for H and possible migration paths are explored. We find that the presence of Cr and its migration via vacancy and interstitials creates the conditions in produce stable preferential trapping sites for H in the grain boundary, that delay the H migration, thereby explaining the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call