Abstract

AbstractWe experimentally studied hydrogen (H)–deuterium (D) substitution reactions of solid methylamine (CH3NH2) under astrophysically relevant conditions. We also calculated the potential energy surface for the H–D substitution reactions of methylamine isotopologues using quantum chemical methods. Despite the relatively large energy barrier of more than 18 kJ mol−1, CH3NH2 reacted with D atoms to yield deuterated methylamines at 10 K, suggesting that the H–D substitution reaction proceeds through quantum tunneling. Deuterated methylamines reacted with H atoms as well. On the basis of present results, we propose that methylamine has potential for D enrichment through atomic surface reactions on interstellar grains at very low temperatures in molecular clouds. D enrichment would occur in particular in the methyl group of methylamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.