Abstract

AbstractThe large variations in hydrogen isotope ratios found in insoluble organic matter (IOM) in chondritic meteorites may be attributed to hydrogen isotopic exchange between IOM and water during aqueous alteration. We conducted D–H exchange experiments (1) during synthesis of IOM simulant (hereafter called chondritic organic analog, COA) from formaldehyde, glycolaldehyde, and ammonia with water, and (2) with the synthesized COA with a secondary reservoir of water. The changes in the D/H ratios obtained by infrared spectra of the COA suggest that most of the hydrogen in the COA is derived from water during synthesis. We further investigated the kinetics of D–H exchange between D‐rich COA and D‐poor water, as well as the opposite case, D‐poor COA and D‐rich water. To help assess understanding exchange kinetics, two‐dimensional isotope imaging obtained using isotope microscope revealed that no gradient D–H exchange profiles were present in the COA grains, indicating that the rate‐limiting step for D–H exchange is not diffusion. Thus, the changes in D/(D + H) ratios were fit by the first‐order reaction rate law. Apparent kinetic parameters—the rate constants, the activation energies, and the frequency factors—were obtained with the Arrhenius equation. Using these kinetic expressions, hydrogen isotopic exchange profiles were estimated for time and temperature behavior. The D–H exchange between organic matter and water is apparently relatively fast and this implies that the aqueous alteration temperatures should have been very low, likely close to 0 °C to maintain hydrogen isotopic disequilibrium between organic matter and liquid water for millions of years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.