Abstract

Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety, low cost, and environmental benignity. However, practical applications of aqueous batteries are plagued by water's intrinsically narrow electrochemical stability window, which results in low energy density. In this perspective article, we review several strategies to broaden the electrochemical window of aqueous electrolytes and realize high-energy aqueous batteries. Specifically, we highlight our recent findings on stabilizing aqueous Li storage electrochemistry using a deuterium dioxide-based aqueous electrolyte, which shows significant hydrogen isotope effects that trigger a wider electrochemical window and inhibit detrimental parasitic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.